

1	Vertical profiles of cloud condensation nuclei number concentration
2	and its empirical estimate from aerosol optical properties over the
3	North China Plain
4	
5	Rui Zhang ¹ , Yuying Wang ¹ , Zhanqing Li ^{2,3} , Zhibin Wang ⁴ , Russell R. Dickerson ³ , Xinrong Ren ³ ,
6	Hao He ³ , Fei Wang ⁵ , Ying Gao ⁶ , Xi Chen ¹ , Jialu Xu ¹ , Yafang Cheng ⁷ , Hang Su ⁸
7	
8	
9	¹ Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School
10	of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing
11	210044, China
12	² State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System
13	Science, Beijing Normal University, Beijing 100875, China
14	³ Earth System Science Interdisciplinary Center, Department of Atmospheric and Oceanic Science,
15	University of Maryland, College Park, MD, USA
16	⁴ Research Center for Air Pollution and Health, College of Environmental and Resource Science,
17	Zhejiang University, Hangzhou 310058, China
18	⁵ Key Laboratory for Cloud Physics, Chinese Academy of Meteorological Sciences, Beijing,
19	100081, China
20	⁶ School of Atmospheric Sciences, Nanjing University, Nanjing 210008, China
21	⁷ Minerva Research Group, Max Planck Institute for Chemistry, 55128 Mainz, Germany
22	⁸ Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
23	
24	
25	Correspondence to: Yuying Wang (yuyingwang@nuist.edu.cn)
26	

27 Abstract

28 To better understand the characteristics of aerosol activation ability and optical properties, a 29 comprehensive airborne campaign was implemented over the North China Plain (NCP) from May 30 8 to June 11, 2016. Vertical profiles of cloud condensation nuclei (CCN) number concentration 31 (N_{CCN}) and aerosol optical properties were measured simultaneously. Seventy-two-hour air mass 32 back trajectories show that during the campaign the measurement region is mainly influenced by air 33 masses in northwest and southeast. Air mass sources, temperature structure, anthropogenic 34 emissions, and terrain distribution are factors influencing $N_{\rm CCN}$ profiles. CCN spectra suggest that the ability of aerosol activation into CCN is stronger in southeast air masses than in northwest air 35 masses and stronger in the free atmosphere than near the surface. Vertical distributions of aerosol 36 37 scattering Ångström exponent (SAE) indicate that aerosols near the surface mainly originate from 38 primary emissions consisting of more fine particles. The combined effect of aerosol lifting aloft and 39 long-distance transport increase SAE and make it vary more in the free troposphere than near the surface. For parameterizing $N_{\rm CCN}$, the equation $N_{\rm CCN}=10^{\beta} \cdot \sigma^{\gamma}$ is used to fit the relationship between 40 $N_{\rm CCN}$ and the aerosol scattering coefficient (σ) at 450 nm. The fitting parameters β and γ have linear 41 42 relationships with the SAE. Empirical estimates of $N_{\rm CCN}$ at 0.7% water vapor supersaturation (ss) 43 from aerosol optical properties are thus retrieved for the two air $N_{\rm CCN} = 10^{-0.22 \cdot \text{SAE} + 2.39} \cdot \sigma^{0.30 \cdot \text{SAE} + 0.29}$ for northwest 44 masses: air masses and $N_{\text{CCN}}=10^{-0.07\cdot\text{SAE}+2.29} \cdot \sigma^{0.14\cdot\text{SAE}+0.28}$ for southeast air masses. The estimated N_{CCN} at 0.7% ss agrees 45 46 with that measured, although the performance differs between low and high concentrations in the 47 two air masses. The results highlight the important impact of aerosol sources on the empirical estimate of N_{CCN} from aerosol optical properties. 48

49

50 **1. Introduction**

51 Defined as the mixture of solid and liquid particles suspended in the air, aerosols have a great 52 impact on Earth's climate system via their direct and indirect effects (IPCC, 2021). They not only 53 alter Earth's radiation budget by absorbing and scattering solar radiation directly (e.g., Bond et al., 54 2013) but also affect the radiation budget indirectly by serving as cloud condensation nuclei (CCN),

55	modifying the microphysical properties of clouds (e.g., Lohmann and Feichter, 2005; Andreae and
56	Rosenfeld, 2008). This is referred to as aerosol-cloud interactions (ACI). Many studies suggest that
57	good knowledge of the CCN activation ability is the key to quantitatively evaluating ACI and its
58	radiative forcing in models (e.g., Rosenfeld et al., 2014, 2016; Z. Li et al., 2016, 2019; Liu and Li.,
59	2020). However, this is uncertain because of the lack of comprehensive observations.
60	CCN is a subset of aerosols that can be activated at a certain water vapor supersaturation (ss).
61	The activation ability is mainly determined by three aerosol properties, namely, particle size,
62	chemical composition, and mixing state (e.g., Farmer et al., 2015; F. Zhang et al., 2017; Cai et al.,
63	2018; Y. Wang et al., 2018). Previous studies have reported that these three factors have large
64	spatiotemporal variabilities over different regions in the world (e.g., Juranyi et al., 2011; Paramonov
65	et al., 2015; Schmale et al., 2018), especially in fast-developing countries like China (Z. Li et al.,
66	2019). This increases the uncertainty of estimates of ACI.
67	To evaluate the effect of aerosols on air quality and atmospheric radiative forcing in China,
68	many field experiments have been carried out in recent years in some developed regions, such as
69	the Pearl River Delta (PRD) (e.g., Rose et al., 2010), the Yangtze River Delta (YRD) (e.g., Leng et
70	al., 2013), and the North China Plain (NCP) (e.g., L. J. Guo et al., 2015; F. Zhang et al., 2017; J.
71	Ren et al., 2018). Some of these studies including measurements of CCN aimed at investigating the
72	characteristics of CCN activation properties and their influential factors or establishing reasonable
73	estimation schemes for CCN number concentration ($N_{\rm CCN}$). For example, L. J. Guo et al. (2015)
74	discussed the change in CCN activation properties in a long-lasting severe fog and haze episode. F.
75	Zhang et al. (2017) conducted $N_{\rm CCN}$ closure experiments, finding that $N_{\rm CCN}$ was well estimated using
76	the data of aerosol size number concentration and bulk chemical composition but it was influenced
77	by the aerosol aging level. J. Ren et al. (2018) suggested that it was better to predict $N_{\rm CCN}$ using
78	aerosol size-resolved rather than bulk chemical composition data. However, most of these studies
79	were based on ground-based observations, which could not characterize the vertical distributions of
80	CCN properties and $N_{\rm CCN}$ profiles. The CCN activation ability and $N_{\rm CCN}$ below cloud bases are key
81	in quantifying ACI (Rosenfeld et al., 2014; Z. Li et al., 2016). Therefore, it is necessary to do more
82	studies about CCN profiles in China.
83	A commonly used platform to observe $N_{\rm CCN}$ profiles and the vertical distribution of CCN

84 activation ability is an aircraft (e.g., J. Li et al., 2015b; Jayachandran et al., 2020a; Manoj et al.,

85 2021; Z. Cai et al., 2022). However, limited by high costs and technological complexity, current 86 aircraft measurements are insufficient to quantify ACI. Some studies have thus attempted to 87 estimate N_{CCN} using aerosol optical data (e.g., Andreae, 2009; Liu and Li, 2014; Tao et al., 2018). 88 For example, Andreae (2009) built an exponential function between $N_{\rm CCN}$ and aerosol optical depth 89 (AOD). Liu and Li (2014) defined the aerosol scattering index (AI) using aerosol scattering 90 coefficients (σ) and aerosol scattering Ångström exponent (SAE) to estimate N_{CCN} . Tao et al. (2018) 91 proposed a new method for estimating N_{CCN} based on a three-wavelength humidified nephelometer 92 system. Most of these $N_{\rm CCN}$ parameterization schemes, however, were conducted based on ground-93 based observations in different regions and were rarely verified by in situ $N_{\rm CCN}$ profiles. 94 Over the past few decades, rapid industrialization and urbanization have made the NCP one of 95 the most heavily polluted regions in China. The large number of aerosols and gases emitted by 96 human activities deteriorated air quality, strongly impacting the regional climate (e.g., Fan et al., 97 2016; Chen et al., 2022). The aerosol activation ability and optical properties in the NCP have drawn 98 much attention (e.g., Zhang et al., 2016, 2017; Wang et al., 2018b). In light of this, we undertook a 99 comprehensive airborne campaign in the NCP under the aegis of a project called Air chemistry

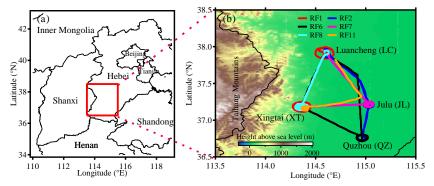
100 Research In Asia (ARIAs). We directly measured profiles of N_{CCN} and aerosol optical properties 101 from an aircraft and analyzed the CCN activation property and relationships between N_{CCN} and 102 aerosol optical properties. This study will provide a perspective to improve aerosol-cloud 103 parameterizations applied in the NCP. Analytical methods developed here will also be applicable to 104 other regions of the world.

This paper is structured as follows. Details about the airborne campaign, instruments, and air mass sources are given in Section 2. Section 3 discusses and analyzes $N_{\rm CCN}$ profiles at 0.7% *ss*, vertical distributions of CCN spectra, and possible relationships between $N_{\rm CCN}$ and aerosol optical properties. Section 4 summarizes the major conclusions of this study.

109

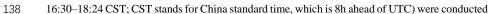
110 2. Airborne campaign, instruments, and air mass sources

111 2.1 Airborne campaign


112 Hebei province (36°05' N-42°40' N, 113°27' E-119°50' E) is located north of the Yellow River

and east of the Taihang Mountains in the NCP. It surrounds the Beijing and Tianjin megacities,

- 114 and borders Shangdong province to the east, Shanxi province to the west, Henan province to the 115 south, and the Inner Mongolia Autonomous Region to the north (Fig. 1a). The terrain of Hebei 116 province is high in the northwest and low in the southeast, with the altitude generally decreasing 117 from the northwest to the southeast. The plain area covers most of Hebei province, located in the 118 eastern foothills of the Taihang Mountains.
- 119


121 122 conducted over the southern plain of Hebei province in from May 8 to June 11, 2016. The colored 123 background shows terrain heights above sea level (unit: m).

124

120

Figure 1. (a) The geographic location of Hebei province and (b) flight tracks of six flights

125 The ARIAs campaign was carried out from May 8 to June 11, 2016 in the southern plain area 126 of Hebei province using a Y-12 turboprop airplane operated by the Weather Modification Office 127 of the Hebei Meteorological Bureau. The details of the flight plans were introduced in F. Wang et 128 al. (2018). Luancheng (LC, 114.36° E, 37.18° N; 182 m above sea level, or a.s.l.), Xingtai (XT, 129 114.36° E, 37.18° N; 182 m a.s.l.), Julu (JL, 115.02° E, 37.22° N; 20 m a.s.l.), and Quzhou (QZ, 130 114.96° E, 36.76° N; 40 m a.s.l.) are the four central sampling sites (Fig. 1b), all to the east of the 131 Taihang Mountains. Six flights (RF1, RF2, RF6, RF7, RF8, and RF11) measuring N_{CCN} and aerosol 132 optical properties are used in this study. In all the flights, the Y-12 airplane conducted vertical 133 spiral flights from ~ 0.3 to ~ 3.5 km near one or two central sampling sites and level flights at 134 different fixed altitudes between different central sampling sites. Every flight obtained several 135 $N_{\rm CCN}$ profiles at one or two sites and $N_{\rm CCN}$ data at several fixed altitudes. Table 1 lists details about 136 the flight tracks (also see Fig. 1b). 137 Altitudes are distances a.s.l. in this study. All aircraft flights except RF8 (conducted from

139	around noon (10:00-15:00 CST), when the planetary boundary layer (PBL) height was fully
140 141	developed.
142	Table 1. Detailed information about the flight tracks deployed during the campaign. Flight
143	code (third column): The number after 'RF' indicates the flight number, the number after '_'
144	indicates the number of vertical spiral flights, and the letter after '_' indicates the number of level
145	flights.

Flight number, date	Time range (CST)	Flight code	Region covered	Vertical height a.s.l. (km)
RF1, 20160508	13:02-14:29	RF1_1	XT	0.3–3.7
		RF1_a	track from XT to LC	~3.6
		RF1_2	LC	0.3–3.2
RF2, 20160515	12:17-15:04	RF2_a	track from LC to JL	~0.4
		RF2_1	JL	0.3–3.6
		RF2_2	QZ	0.3–3.6
		RF2_b	track from QZ to JL	~3.6
		RF2_c	track from JL to LC	~0.4
RF6, 20160521	12:04-14:41	RF6_1	QZ	0.3-3.1
		RF6_a	track from QZ to XT	~2.5
		RF6_2	XT	0.3–2.6
		RF6_b	track from XT to LC	~1.1
RF7, 20160528	10:21-13:25	RF7_a	track around XT	~3.1
		RF7_1	XT	0.5-3.1
		RF7_b	track from XT to JL	~0.4
		RF7_2	JL	0.3–2.5
		RF7_c	track from JL to LC	~1.8
RF8, 20160528	16:30-18:24	RF8_a	track around XT	~0.6
		RF8_1	XT	0.5-3.1
RF11, 20160611	11:07-12:28	RF11_a	track around XT	~0.6
		RF11_1	XT	0.3-3.2

146

147 2.2 Instruments

148To satisfy the needs of this study, the Y-12 airplane was equipped with a dual-column CCN149counter (CCNc), a three-wavelength integrating nephelometer, and a Cloud Water Inertial Probe150(CWIP). All instruments were calibrated rigorously prior to the airborne campaign. Table 2151summarizes the instruments equipped on the airplane.

4	-	1
	ъ	-

Table 2	Instruments equ	uinned on the	V-12 airnlane i	used in this study.

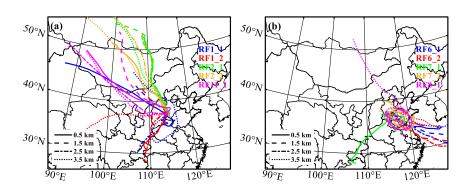
Instrument	Parameter	Time resolution	Accuracy
CCN counter (model CCNc-200, DMT Inc.)	CCN number concentrations $(N_{\rm CCN})$	1 s	_
Nephelometer (model 3565, TSI Inc.)	Aerosol scattering coefficients (σ) at three wavelengths (450, 550, and 700 nm)	1 s	0.5 Mm ⁻¹
CIVID	Temperature (T)	1 s	1 K
CWIP (Rain Dynamics Inc.)	Relative humidity (RH)	1 s	2%
(Kain Dynamics Inc.)	Position	0.1 s	_

154

N_{CCN} was measured by a dual-column continuous-flow thermal-gradient cloud condensation 155 156 nuclei counter (model CCN_C-200, DMT Inc.) with a time resolution of 1 s. It is equipped with two columns that can simultaneously measure N_{CCN} at two different ss levels without mutual 157 158 interference. In this campaign, only one ss level is set in the first column during all flights, but 159 eight different ss levels are set in the second column with a measurement time interval of 90 s for 160 each ss level. Considering the equilibrium time of ss levels, the final 30 s data at any ss level in the 161 cycle for the second column is used in this study. The ss level in columns was calibrated with pure 162 ammonium sulfate following procedures developed by Rose et al. (2008). The ss level in the first 163 column was corrected to 0.7% and the ss levels in the second column were corrected to 0.44%, 164 0.56%, 0.68%, 0.80%, 0.92%, 1.04%, 1.16%, and 1.28%. N_{CCN} profiles at 0.7% ss and N_{CCN} data 165 at different ss levels were thus available.

The integrating nephelometer (model 3565, TSI Inc.) can continuously measure aerosol 166 167 scattering coefficients (σ) at three wavelengths (450, 550, and 700 nm) with a time resolution of 1 168 s. Previous studies have shown that σ becomes larger with increasing relative humidity (RH) due 169 to aerosol hygroscopic growth (e.g., L. Zhang et al., 2015; R. Ren et al., 2021). Hence, the RH of 170 sampled air was dried to below 40% in this campaign. The nephelometer was calibrated and tested 171 rigorously prior to the airborne campaign using carbon dioxide gas and filtered zero air. Anderson 172 and Ogren (1998) have provided details about the calibration methods and measurement 173 uncertainties of this nephelometer.

174Ambient temperature (T) and RH were measured by a CWIP (Rain Dynamics Inc.) with a175time resolution of 1 s during flights. Real-time flight position data such as longitude, latitude, and



- altitude were recorded by a global positioning system (GPS) and the CWIP with a time resolution
 of 0.1 s. The CWIP time was calibrated and synchronized with the GPS time prior to deployment.
- 179 2.3 Air mass sources

180 Previous studies have suggested that differences in air masses will lead to spatiotemporal 181 differences in CCN activation ability and aerosol optical properties (e.g., Xu et al., 2020; Jayachandran et al., 2020b). To better understand air mass sources and aerosol transport pathways 182 183 over the measurement area, seventy-two-hour air mass back trajectories for all $N_{\rm CCN}$ profiles at 0.5, 1.5, 2.5, and 3.5 km are analyzed using the NOAA Hybrid Single Particle Lagrangian Integrated 184 Trajectory (HYSPLIT) model (Draxier and Hess, 1998). Results show that the sampling region is 185 mainly influenced by two distinct air masses, namely, northwest air masses and southeast air masses 186 187 (Fig. 2). Northwest air masses (Fig. 2a) originate from arid or semi-arid land, including five $N_{\rm CCN}$ profiles whose flight codes are RF1_1, RF1_2, RF2_1, RF2_2, and RF11_1. Before these 188 trajectories approach the sampling area, most of these air masses flow around or are forced to lift 189 190 due to the influence of the Taihang Mountains. However, southeast air masses (Fig. 2b) originate 191 from coastal or marine areas, also including five $N_{\rm CCN}$ profiles whose flight codes are RF6 1, RF6 2, 192 RF7_1, RF7_2, and RF8_1. Air masses in place during the RF7_1, RF7_2, and RF8_1 flights 193 originate from coastal areas, and those during the RF6_1 and RF6_2 flights originate from the 194 western Pacific. Southeast trajectories pass over the densely populated plain region to the east and 195 south of the sampling area, which is easily impacted by anthropogenic emissions. These trajectories 196 are also easily affected by differences in land and sea thermal properties, raising the air masses 197 gradually before reaching the sampling area (Fig. S1).

199

Figure 2. Seventy-two-hour HYSPLIT back trajectories over the sampling region: (a) northwest air masses and (b) southeast air masses. The color of trajectories indicates different flight codes associated with N_{CCN} profiles. The line type shows trajectories with different starting altitudes (0.5, 1.5, 2.5, and 3.5 km).

204

205 3. Results and Discussion

206 3.1 Vertical distributions of $N_{\rm CCN}$

207 3.1.1 Effect of the temperature inversion layer (TIL) on N_{CCN} profiles

208 Previous studies have demonstrated the significant impact of the TIL structure on the vertical

209 distributions of aerosols and $N_{\rm CCN}$ (e.g., Janhäll et al., 2006; J. Li et al., 2015a, 2015b). Here, $N_{\rm CCN}$

210 profiles are classified into three categories according to the number of TILs (Table 3). Three typical

211 N_{CCN} profiles at 0.7% ss (RF2_1, RF6_1, and RF1_1) with different numbers of TILs are chosen

212 for comparison purposes (Fig. 3; $N_{\rm CCN}$ profiles associated with the other three flight codes are shown

- 213 in Figs. S2-4).
- 214

215

Table 3. Classification of different N_{CCN} profiles based on the number of TILs.

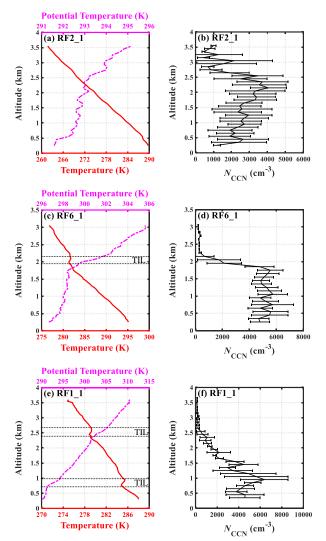
Categories	Flight codes of $N_{\rm CCN}$ profiles
No TIL	RF2_1, RF2_2
One TIL	RF6_1, RF6_2, RF7_1, RF7_2, RF8_1, RF11_1
Two TILs	RF1_1, RF1_2

216

217 No TIL: Figure 3a shows vertical profiles of T and potential temperature (θ) for the RF2_1

218 N_{CCN} profile (Fig. 3b). T decreases with altitude in the absence of a TIL while the variation in θ with

219	altitude $(\partial \theta \partial z)$ is generally small below ~2.3 km (Fig. 3a). These meteorological conditions are
220	favorable for the upward transport of aerosols below ~2.3 km. The larger $\partial\theta\partial z$ above ~2.3 km
221	suggests a more stable atmosphere, suppressing the upward transport of aerosols (Yau and Rogers,
222	1998). This is why $N_{\rm CCN}$ peaks at ~2.3 km and decreases rapidly above (Fig. 3b). However, a second
223	$N_{\rm CCN}$ peak is observed at ~3.2 km, with a small $\partial \theta \partial z$ in the vicinity. The seventy-two-hour back
224	trajectory shows that the air mass in this case originates from the northwestern arid/semi-arid parts
225	of Mongolia (Fig. 2a). The long-distance transport of aerosols (like dust particles) may be
226	responsible for the $N_{\rm CCN}$ peak at ~3.2 km. In another $N_{\rm CCN}$ profile with no TIL (RF2_2), a weak
227	$N_{\rm CCN}$ peak also appears at ~3.2 km (Fig. S2b). The RF11_1 $N_{\rm CCN}$ profile with similar back
228	trajectories as RF2_1 and RF2_2 also has a weak $N_{\rm CCN}$ peak at ~3.2 km. This suggests that the long-
229	distance transport of aerosols plays an important role in $N_{\rm CCN}$ in the free troposphere over the NCP
230	under the influence of northwest air masses. Note that high $N_{\rm CCN}$ in the free troposphere has an
231	important impact on cloud microphysical properties (Rosenfeld et al., 2008).


232 **One TIL:** The temperature profile in Fig. 3c shows a ~0.4-km-deep TIL at ~1.8 km. A thick 233 TIL hinders the upward transport of aerosols and facilitate the vertical mixing of $N_{\rm CCN}$ below the 234 TIL. $N_{\rm CCN}$ thus varies little with altitude below the TIL, with a mean $N_{\rm CCN}$ at 0.7% ss of 5140 cm⁻³ 235 (Fig. 3d). The θ profile in Fig. 3c suggests that $\partial\theta/\partial z$ above the TIL is much larger than below the 236 TIL, meaning a more stable atmosphere above the TIL. $N_{\rm CCN}$ quickly decreases by an order of 237 magnitude from below to above the TIL (from 5542 cm⁻³ at ~1.8 km to 365 cm⁻³ at ~2.2 km). 238 Overall, the presence of a thick TIL has a large impact on the $N_{\rm CCN}$ profile.

239 Two TILs: The temperature profile in Fig. 3e depicts two shallow TILs with the same depth 240 of ~0.2 km, appearing at ~0.8 km and ~2.5 km, respectively. Due to the hindering effect of a TIL on 241 the vertical transport of aerosols, only a small amount of CCN break through the first TIL and diffuse 242 to higher altitudes. Figure 3f suggests that $N_{\rm CCN}$ increases with altitude from near the surface to the bottom of the first TIL. A large amount of CCN accumulate below the first TIL, peaking at its bottom. 243 The second TIL makes N_{CCN} accumulate again between the two TILs. Under the combined effect 244 245 of two TILs, the upward transport of CCN becomes difficult. The θ profile in Fig. 3e also shows 246 that $\partial \theta \partial z$ is always positive, varying slightly with height. N_{CCN} generally experiences a declining trend with altitude between the two TILs (from 6380 cm⁻³ at 0.9 km to 635 cm⁻³ at 2.5 km). Above 247 248 the second TIL, $N_{\rm CCN}$ remains at low and stable, with concentrations on the order of 10^2 cm⁻³.

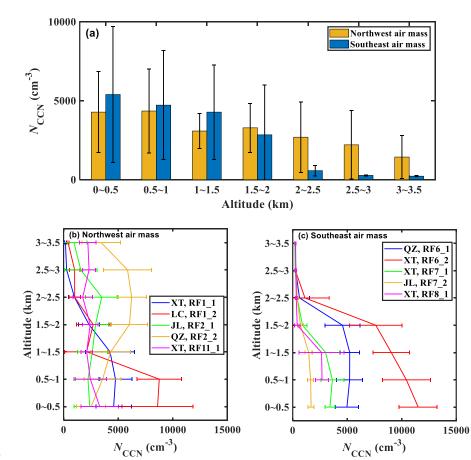
- 249 In summary, the TIL structure has an important impact on the vertical distribution of $N_{\rm CCN}$.
- 250 Moreover, N_{CCN} in the free troposphere are easily impacted by the long-distance transport of
- aerosols under the influence of northwest air masses.
- 252

253

Figure 3. Vertical distributions of temperature (*T*) and potential temperature (θ) (**a**, **c**, **e**), and N_{CCN} at 0.7% *ss* (**b**, **d**, **f**) for RF2_1, RF6_1, and RF1_1 N_{CCN} profiles with (from top to bottom) no temperature inversion layer (TIL), one TIL, and two TILs. Horizontal error bars represent standard deviations of N_{CCN} at 0.7% *ss* at altitude intervals of 100 m.

259 3.1.2 Influence of air masses on N_{CCN} profiles

260 To further investigate the influence of air masses on N_{CCN} profiles, the mean N_{CCN} at 0.7% ss 261 in different altitude ranges in two distinct air masses is analyzed (Fig. 4). In general, the mean $N_{\rm CCN}$ at 0.7% ss has a declining trend with increasing altitude in both air masses (Fig. 4a). The $N_{\rm CCN}$ in 262 263 southeast air masses is higher than in northwest air masses below 1.5 km, indicating more aerosol 264 particles that can be activated as CCN in southeast air masses. Section 2.3 indicates that southeast air masses always pass over the densely populated plain area. This means that massive 265 266 anthropogenic emissions can clearly increase $N_{\rm CCN}$ near the surface. However, $N_{\rm CCN}$ above 2 km is 267 much lower in southeast air masses than in northwest air masses. This further indicates that the longrange transport of aerosols under the influence of northwest air masses contributes significantly to 268 269 $N_{\rm CCN}$ in the free troposphere.


270 Figures 4b and 4c depict the mean N_{CCN} at 0.7% ss in different altitude ranges in northwest and 271 southeast air masses, respectively. Under the influence of northwest air masses, the temperature 272 structure varies, leading to different N_{CCN} profiles (Fig. 4b). For RF2_1 and RF2_2 N_{CCN} profiles 273 with no TIL (Figs. 3b and S2b), the combined effect of upward and long-distance transport of 274 aerosols increases N_{CCN} at 0.7% ss above 2 km. The N_{CCN} from 2 to 2.5 km is even higher than near 275 the surface. For the RF11_1 N_{CCN} profile with one TIL, N_{CCN} at 0.7% ss varies slightly with altitude. 276 For RF1 1 and RF1 2 N_{CCN} profiles with two TILs, N_{CCN} at 0.7% ss above 2 km is much lower than 277 near the surface.

Under the influence of southeast air masses, the thermal structure for all N_{CCN} profiles is similar, 278 279 with one TIL (Table 3). The N_{CCN} profile patterns are thus similar, showing much lower N_{CCN} above 280 2 km than near the surface (Fig. 4c). Figure 4c also suggests that $N_{\rm CCN}$ at 0.7% ss below 2 km is 281 higher in the RF6 1 and RF6 2 N_{CCN} profiles than in the other three N_{CCN} profiles (i.e., RF7 1, 282 RF7_2, and RF8_1). As discussed in section 2.3, air masses during RF6_1 and RF6_2 originate 283 from the western Pacific, while the others originate from coastal areas. This suggests that the impact of marine aerosols is the possible reason for high N_{CCN} in the RF6 1 and RF6 2 N_{CCN} profiles. 284 285 Figure 4c also shows that the $N_{\rm CCN}$ below 2 km is much higher at XT than at QZ and JL during the 286 same flights (RF6 2 vs. RF6 1, and RF7 1 vs. RF7 2). Figure 1b shows that the XT site is closer

287 to the Taihang Mountains than the QZ and JL sites. This implies that the terrain blocking effect of

288 the Taihang Mountains on aerosols accumulates aerosols, resulting in higher N_{CCN} at XT.

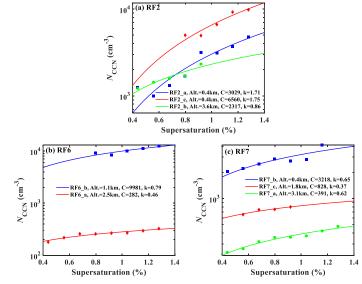
291 292

Figure 4. (a) Mean N_{CCN} at 0.7% *ss* in different altitude ranges (ranging from 0 to 3.5 km at intervals of 0.5 km) in northwest and southeast air masses, and for different N_{CCN} profiles at 0.7% *ss* in **(b)** northwest air masses and **(c)** southeast air masses. The different colors in (b) and (c) are for different flights. Error bars represent standard deviations of N_{CCN} at 0.7% *ss*.

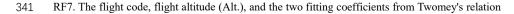
293 294

In summary, N_{CCN} profiles *ss* are influenced by multiple factors over the NCP. TIL structure, aerosol long-range transport, and anthropogenic emissions lead to differences in the N_{CCN} profiles in different air masses. Even in the same air mass, diverse aerosol sources and terrain distributions cause large differences in N_{CCN} .

300 3.2 Vertical distributions of CCN spectra in different air masses


301	The CCN spectrum is usually defined as a function of N_{CCN} to ss. Twomey (1959) first reported
302	that $N_{\rm CCN}$ had an exponential relationship with ss. Since then, a variety of such functions have been
303	proposed thanks to a large number of observations made which are all necessary given its nature of
304	empirical relationships whose validity are generally limited. For example, Ji and Shaw (1998)
305	provided a three-parameter function, while Gunthe et al. (2011) suggested a logarithmic function to
306	fit CCN spectra. In this study, $N_{\rm CCN}$ measurements made at different ss during 11 level fights are
307	used to fit CCN spectra. Twomey's relation (Twomey, 1959; Cohard et al., 1998) is used to fit the
308	relationship between N_{CCN} and <i>ss</i> according to the least-squares method: $N_{\text{CCN}}(ss) = C \cdot (ss)^k$ (1)
309	where $N_{\text{CCN}}(ss)$ is the N_{CCN} at a specified ss, and C and k are two fitting coefficients. Table S1 lists
310	the fitting results for the 11 level flights. In Eq. (1), the C value represents N_{CCN} at 1.0% ss, and the
311	shape of the CCN spectrum is determined by the k value. Previous studies have suggested that k is
312	closely related to the shape of particle number size distribution (PNSD) and aerosol hygroscopicity
313	(e.g., Hegg et al., 1991; Jefferson, 2010). A lower k value means a stronger aerosol activation ability
314	(i.e., more coarse-mode particles or stronger aerosol hygroscopicity), and vice versa.
315	Figure 5 shows CCN spectra at different altitudes during three level flights (RF2, RF6, and
316	RF7). The seventy-two-hour back trajectories (Fig. 2a) suggest that the RF2 flight is influenced by
317	northwest air masses. The CCN spectra during three level flights (RF2_a, RF2_b, and RF2_c; Fig.
318	5a) shows that C and k are lower at 3.6 km (RF2_b) than at 0.4 km (RF2_a and RF2_c), indicating
319	smaller $N_{\rm CCN}$ but stronger aerosol activation ability in the free atmosphere than near the surface. At
320	the same altitude (0.4 km), C during the RF2_c flight (6560 cm ⁻³) is more than two times that during
321	the RF2_a flight (3029 cm ⁻³), with different k values (1.75 and 1.71, respectively). This indicates
322	the regional variation of $N_{\rm CCN}$ and the weak aerosol activation ability near the surface.
323	Figures 5b and 5c show CCN spectra during flights RF6 and RF7, which are influenced by
324	southeast air masses (Fig. 2b). The k values associated with southeast air masses (Fig. 5b and 5c)
325	are always lower than those associated with northwest air masses (Fig. 5a). Therefore, aerosols in
326	southeast air masses have a stronger activation ability than those in northwest air masses. This is
327	likely because aerosols from southeast are mostly from anthropogenic emissions including more

328 secondary particle matters such as sulfate and nitrate, while from northwest contains more natural



- 329 components such as mineral dust (Xia et al., 2019; Q. Wang et al., 2022). Figure 5c also shows that 330 k during the RF7 flight decreases from 0.65 at 0.4 km to 0.37 at 1.8 km, increasing to 0.62 at 3.1 331 km. Figures S3c and S3e show that the altitude of the TIL during the RF7 flight is ~2 km. This 332 suggests that the aerosol activation ability near the TIL is stronger than that near the surface and in 333 the free atmosphere above the TIL. This implies that the hindering effect of the TIL promotes aerosol 334 aging processes, enhancing the aerosol activation ability (Y. Wang et al., 2018). 335 Overall, CCN spectra clearly varies with altitude over the NCP. The fitting coefficients of CCN 336 spectra (C and k) are closely related to air mass sources, regional aerosol properties, and temperature
- 337 structure.
- 338

- (C and k) are given in each panel. Solid lines are the fitting lines described by Eq. (1).
- 343

339

344 3.3 The relationship between $N_{\rm CCN}$ and aerosol optical properties

- 345 3.3.1 Vertical distributions of aerosol scattering Ångström exponent (SAE)
- 346 The SAE is calculated as follows, where $\sigma(\lambda 1)$ and $\sigma(\lambda 2)$ are aerosol scattering coefficients at
- 347 two given wavelengths ($\lambda_1 = 450 \text{ nm and } \lambda_2 = 700 \text{ nm}$)

$$SAE = -\frac{\log(\sigma(\lambda_1)) - \log(\sigma(\lambda_2))}{\log(\lambda_1) - \log(\lambda_2)}$$
(2)

SAE is often used to qualitatively assess the dominant size mode of aerosols, reflecting the PNSD
pattern (e.g., Hamonou et al., 1999). A large SAE (> 2) generally implies that fine-mode aerosols
dominated (e.g., smoke particles), while a small SAE (< 1) means that the coarse mode dominated
(e.g., dust particles).

352 Figure 6a shows the vertical distributions of SAE during the vertical spiral flights. Three 353 profiles (RF2_1, RF2_2, and RF11_1) are not shown due to the lack of aerosol optical data. In 354 general, SAE decreases gradually with altitude, while its standard deviation increases with altitude. 355 This is likely because aerosols near the surface are easily influenced by primary emissions from 356 anthropogenic sources, consisting of more fine particles. The frequent appearance of a TIL at ~ 2 km 357 suppresses the upward transport of fine particles, leading to the rapid decrease of SAE above the TIL. The long-distance transport of coarse-mode aerosols (like dust particles) also decreases SAE 358 359 in the free troposphere. As mentioned before, aerosol sources above 2 km are complex, which is why the standard deviation of SAE is larger above ~2 km. 360 361 Figure 6b shows profiles of $N_{\rm CCN}$ and σ (data used here were collected at 0.7% ss and 450 nm,

respectively) during the RF1_1 spiral flight. Figure S5 shows profiles from the other spiral flights. In general, the vertical variation of σ is synchronous with that of N_{CCN} , indicating that they are correlated to some degree.

365

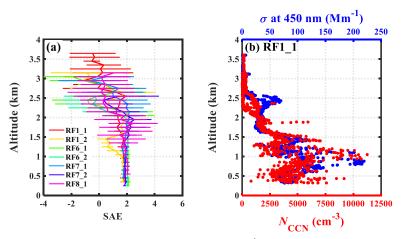


Figure 6. Vertical distributions of (a) aerosol scattering Ångström exponent (SAE) during the vertical spiral flights (error bars are standard deviations of SAE) and (b) *N*_{CCN} at 0.7% *ss* (red dots)

and aerosol scattering coefficient (σ) at 450 nm (blue dots) during the RF1_1 vertical spiral flight.

370

371 3.3.2 Estimation of NCCN from aerosol optical properties

372 Both N_{CCN} and aerosol optical properties are affected by the same factors (e.g., PNSD and 373 chemical composition). Therefore, numerous studies attempted to estimate $N_{\rm CCN}$ for aerosol optical 374 properties, although there was no directly physical connection between them (e.g., Andreae, 2009; 375 Liu and Li, 2014; Tao et al., 2018). Previous studies indicated that the relationship between $N_{\rm CCN}$ and σ was non-linear, mainly due to the variation of PNSD patterns (e.g., Andreae, 2009; Shinozuka 376 377 et al., 2015). As discussed in section 3.3.1, SAE can be used to reflect the PNSD pattern. The clear 378 vertical variation of SAE (Fig. 6a) suggests a complex and variable relationship between $N_{\rm CCN}$ at 379 0.7% ss and σ at 450 nm at different altitudes. Here, the parameterization provided by Shinozuka et 380 al. (2015) is used:

$$N_{\rm CCN} = 10^{\beta} \cdot \sigma^{\gamma} \tag{3}$$

where σ is the aerosol scattering coefficient at 450 nm, and β and γ are two fitting parameters. Shinozuka et al. (2015) suggested that β and γ were correlated to SAE, but the degree of correlation differed in different regions. In this study, N_{CCN} at 0.7% ss and SAE data points are paired to derive β and γ . N_{CCN} at other ss levels are too little to do this work because of the loop measurement of different ss levels in the second column of CCNc-200.

Figure 7 shows the relationships between SAE and β and SAE and γ in two air masses. β is negatively correlated with SAE, while γ is positively correlated with SAE. The correlations are lower (smaller coefficients of determination, R^2) in northwest air masses than in southeast air masses, likely due to more complex aerosol sources in northwest air masses. Empirical estimates of N_{CCN} at 0.7% *ss* from aerosol optical properties are determined as follows:

Northwest air mass:
$$N_{\rm CCN} = 10^{-0.22 \cdot \text{SAE} + 2.39} \cdot \sigma^{0.30 \cdot \text{SAE} + 0.29}$$
 (4)

Southeast air mass:
$$N_{\rm CCN} = 10^{-0.07 \cdot \text{SAE} + 2.29} \cdot \sigma^{0.14 \cdot \text{SAE} + 0.28}$$
 (5)

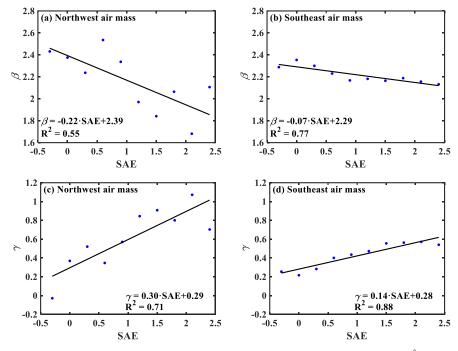


Figure 7. The two fitting parameters β and γ as a function of the aerosol scattering Ångström
exponent (SAE) in northwest air masses (a and c) and southeast air masses (b and d). The dots are
mean values averaged in 0.3-wide SAE bins. The black lines are best-fit lines from linear regression.
Linear relations and coefficients of determination are given in each panel.

397

398 Figure 8 shows the comparisons of measured N_{CCN} at 0.7% ss and estimated N_{CCN} at 0.7% ss 399 using Eqs. (4) and (5) for different vertical spiral flights in northwest and southwest air masses. For both air masses, most points approach the 1:1 line, indicating reasonable estimates using Eq. (4) and 400 401 (5) to parameterize N_{CCN} . For northwest air masses (Fig. 8a), N_{CCN} estimates are better under high 402 concentration conditions than under low concentration conditions. However, for southeast air 403 masses, N_{CCN} estimates are better under low concentration conditions than under high concentration conditions. This is likely related to various aerosol sources at different altitudes. As previously 404 405 discussed, most low $N_{\rm CCN}$ values are observed in the upper atmosphere above the TIL, while high $N_{\rm CCN}$ values are observed below the TIL. In northwest air masses, aerosol sources in the upper 406 atmosphere are diverse, including the upward and long-distance transport of aerosols. This is why 407 408 $N_{\rm CCN}$ estimates worsen under low $N_{\rm CCN}$ conditions. In southeast air masses, a single but thick TIL 409 makes most aerosols accumulate in the lower atmosphere, where local emissions and the impact of

- 410 marine aerosols exacerbate $N_{\rm CCN}$ estimates. These results highlight the important impact of aerosol
- 411 sources on the empirical estimate of $N_{\rm CCN}$ from aerosol optical properties.
- 412

413

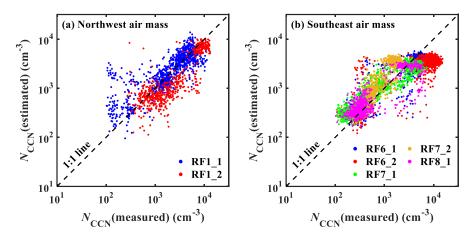


Figure 8. Comparisons between measured N_{CCN} at 0.7% *ss* and estimated N_{CCN} at 0.7% *ss* using Eqs. (4) and (5) for different vertical spiral flights in (**a**) northwest and (**b**) southeast air masses.

417 **4. Conclusions**

418 A comprehensive airborne campaign was conducted over the North China Plain (NCP) under 419 the aegis of a project called Air chemistry Research In Asia (ARIAs). Seventy-two-hour air mass 420 back trajectories show that the region of study during this campaign is mainly influenced by 421 northwest and southeast air masses, originating from arid/semi-arid regions and coastal or marine 422 areas, respectively. In this study, the profiles of cloud condensation nuclei number concentration 423 ($N_{\rm CCN}$) and their estimates from aerosol optical properties are analyzed.

It is found that N_{CCN} profiles at the water vapor supersaturation (*ss*) of 0.7% are impacted largely by the temperature structure in the atmosphere. In general, the presence of a temperature inversion layer (TIL) suppresses the upward transport of aerosols from near the surface, which is affected by the number and thickness of TILs. In addition, air mass sources have a significant impact on N_{CCN} profile characteristics. Under the influence of northwest air masses, N_{CCN} in the free troposphere are easily impacted by the long-distance transport of aerosols. However, under the influence of southeast air masses, atmospheric thermal structures for all N_{CCN} profiles are similar,

431 with one TIL present in all cases. The patterns of $N_{\rm CCN}$ profiles are also similar, showing much lower 432 $N_{\rm CCN}$ above the TIL than near the surface. In addition to the impact of anthropogenic emissions, the 433 transport of marine aerosols is another reason for the high $N_{\rm CCN}$ near the surface when a southeast 434 air mass is present. Moreover, comparisons of $N_{\rm CCN}$ profiles during the same flights suggests that 435 the terrain blocking effect of the Taihang Mountains on aerosols accumulates aerosols, resulting in 436 high $N_{\rm CCN}$ near the mountains.

The Twomey's relation $(N_{CCN}(ss) = C \cdot (ss)^k$, where C and k are two fitting coefficients) is used 437 to analyze CCN spectra and aerosol activation ability in this study. In general, there is a clear change 438 439 in CCN spectra with altitude. The aerosol activation ability in southeast air masses is stronger than 440 in northwest air masses, mainly due to the different chemical composition associated with diverse 441 air masses. In addition, the aerosol activation ability is stronger in the free atmosphere than near the 442 surface. The hindering effect of a TIL on the upward transport of aerosols promotes aerosol aging 443 processes, enhancing the aerosol activation ability near the TIL. The vertical distribution of aerosol 444 scattering Ångström exponent (SAE) indicates that aerosols near the surface are easily influenced 445 by primary emissions, consisting of more fine particles. The combined effect of aerosol upward and long-distance transport increases SAE and make it vary more in the free troposphere than near the 446 447 surface.

The comparison of $N_{\rm CCN}$ at 0.7% ss and aerosol scattering coefficient (σ) at 450 nm suggests 448 that the vertical variation of σ is synchronous with that of N_{CCN} . The equation, $N_{\text{CCN}} = 10^{\beta} \cdot \sigma^{\gamma}$ (β and 449 450 γ are two fitting parameters), is used to parameterize $N_{\rm CCN}$, with the parameters β and γ being linearly correlated with the SAE. Empirical estimates of $N_{\rm CCN}$ at 0.7% ss from aerosol optical properties are 451 retrieved ($N_{\text{CCN}}=10^{-0.22 \cdot \text{SAE}+2.39} \cdot \sigma^{0.30 \cdot \text{SAE}+0.29}$ for northwest air masses, 452 thus and $N_{\text{CCN}} = 10^{-0.07 \cdot \text{SAE} + 2.29} \cdot \sigma^{0.14 \cdot \text{SAE} + 0.28}$ for southeast air masses). The closure between the estimated and 453 454 measured $N_{\rm CCN}$ at 0.7% ss is acceptable although different performances are seen under low and 455 high concentration conditions for the two air masses. Results suggest the important impact of aerosol 456 sources on the empirical estimate of N_{CCN} from aerosol optical properties.

457 $N_{\rm CCN}$ profiles in the NCP are impacted by multiple factors, including temperature structure, 458 air mass sources, anthropogenic emissions, and terrain distribution. These factors make estimating 459 $N_{\rm CCN}$ from aerosol optical properties more difficult. In the future, more aircraft measurement data 460 will be needed to establish a more reasonable parameterization scheme for $N_{\rm CCN}$ at different *ss*. This

461	study may also be useful for studying aerosol activation ability in other regions of the world.
462	
463	Acknowledgements. This work was funded by the National Natural Science Foundation of China
464	(NSFC) research project (grant nos. 42005067 and 42030606), the National Science Foundation of
465	the United States (grant no. 1558259). We also thank all participants in the campaign for their
466	tireless work and cooperation, especially the work of the Hebei Weather Modification Office.
467	
468	Data availability. Measurement data from the field campaign used in this study are available from
469	the corresponding author upon request (yuyingwang@nuist.edu.cn).
470	
471	Author contributions. ZL and YW determined the main goal of this study. RZ and YW conceived
472	the study and prepared this paper. ZL, RD, HS, and YC led the airborne campaign, ZW, XR, HH,
473	and FW conducted this airborne campaign. HS, YC, and ZW provided the CCN data. YG, XC, and
474	JX processed the measurement data. All co-authors participated in science discussions and
475	suggested analyses.
476	
477	Competing interests. The authors declare that they have no conflict of interest.
478	
479	5. References

- 480Anderson, T. L. and Ogren, J. A.: Determining aerosol radiative properties using the TSI 3563 integrating481nephelometer, Aerosol Science and Technology, 29, 57-69,482https://doi.org/10.1080/02786829808965551, 1998.
- Andreae, M. O.: Correlation between cloud condensation nuclei concentration and aerosol optical
 thickness in remote and polluted regions, Atmospheric Chemistry and Physics, 9, 543-556,
 https://doi.org/10.5194/acp-9-543-2009, 2009.
- Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and
 sources of cloud-active aerosols, Earth-Science Reviews, 89, 13-41,
 https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
- Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G.,
 Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G.,
 Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K.,
 Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo,
 T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A
 scientific assessment, Journal of Geophysical Research: Atmospheres, 118, 5380-5552,

495	https://doi.org/10.1002/jgrd.50171, 2013.
496	Cai, M., Tan, H., Chan, C. K., Qin, Y., Xu, H., Li, F., Schurman, M. I., Liu, L., and Zhao, J.: The size-
497	resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol
498	hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014,
499	Atmospheric Chemistry and Physics, 18, 16,419-16,437, https://doi.org/10.5194/acp-18-16419-
500	2018, 2018.
501	Cai, Z., Li, Z., Li, P., Li, J., Sun, H., Yang, Y., Gao, X., Ren, G., Ren, R., and Wei, J.: Vertical distributions
502	of aerosol microphysical and optical properties based on aircraft measurements made over the Loess
503	Plateau in China, Atmospheric Environment, 270, 118888,
504	https://doi.org/10.1016/j.atmosenv.2021.118888, 2022.
505	Chen, C., Qiu, Y., Xu, W., He, Y., Li, Z., Sun, J., Ma, N., Xu, W., Pan, X., Fu, P., Wang, Z., and Sun, Y.:
506	Primary emissions and secondary aerosol processing during wintertime in rural area of North China
507	Plain, Journal of Geophysical Research: Atmospheres, 127, e2021JD035430,
508	https://doi.org/10.1029/2021JD035430, 2022.
509	Cohard, JM., Pinty, JP., and Bedos, C.: Extending Twomey's analytical estimate of nucleated cloud
510	droplet concentrations from CCN spectra, Journal of the Atmospheric Sciences, 55, 3348-3357,
511	https://doi.org/10.1175/1520-0469(1998)055<3348:Etsaeo>2.0.Co;2, 1998.
512	Draxier, R. R. and Hess, G. D.: An overview of the HYSPLIT_4 modeling system of trajectories,
513	dispersion, and deposition, Australian Meteorological Magazine, 47, 295-308, 1998.
514	Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of aerosol-cloud interactions: mechanisms,
515	significance, and challenges, Journal of the Atmospheric Sciences, 73, 4221-4252,
516	https://doi.org/10.1175/jas-d-16-0037.1, 2016.
517	Farmer, D. K., Cappa, C. D., and Kreidenweis, S. M.: Atmospheric processes and their controlling
518	influence on cloud condensation nuclei activity, Chemical Reviews, 115, 4199-4217,
519	https://doi.org/10.1021/cr5006292, 2015.
520	Gunthe, S. S., Rose, D., Su, H., Garland, R. M., Achtert, P., Nowak, A., Wiedensohler, A., Kuwata, M.,
521	Takegawa, N., Kondo, Y., Hu, M., Shao, M., Zhu, T., Andreae, M. O., and Pöschl, U.: Cloud
522	condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing,
523	Atmospheric Chemistry and Physics, 11, 11,023-11,039, https://doi.org/10.5194/acp-11-11023-
524	2011, 2011.
525	Guo, L. J., Guo, X. L., Fang, C. G., and Zhu, S. C.: Observation analysis on characteristics of formation,
526	evolution and transition of a long-lasting severe fog and haze episode in North China, Science
527	China-Earth Sciences, 58, 329-344, https://doi.org/10.1007/s11430-014-4924-2, 2015.
528	Hamonou, E., Chazette, P., Balis, D., Dulac, F., Schneider, X., Galani, E., Ancellet, G., and Papayannis,
529	A.: Characterization of the vertical structure of Saharan dust export to the Mediterranean basin,
530	Journal of Geophysical Research: Atmospheres, 104, 22,257-22,270,
531	https://doi.org/10.1029/1999jd900257, 1999.
532	Hegg, D. A., Radke, L. F., and Hobbs, P. V.: Measurements of Aitken nuclei and cloud condensation
533	nuclei in the marine atmosphere and their relation to the DMS-Cloud-climate hypothesis, Journal
534	of Geophysical Research: Atmospheres, 96, 18,727-18,733, https://doi.org/10.1029/91JD01870,
535	1991.
536	IPCC. Climate Change 2021: The physical basis, sixth assessment of the Inter-governmental Panel on
537	Climate Change[M]. Cambridge University Press, 2021.
538	Janhäll, S., Olofson, K. F. G., Andersson, P. U., Pettersson, J. B. C., and Hallquist, M.: Evolution of the

539	urban aerosol during winter temperature inversion episodes, Atmospheric Environment, 40, 5355-
540	5366, https://doi.org/10.1016/j.atmosenv.2006.04.051, 2006.
541	Jayachandran, V. N., Suresh Babu, S. N., Vaishya, A., Gogoi, M. M., Nair, V. S., Satheesh, S. K., and
542	Krishna Moorthy, K .: Altitude profiles of cloud condensation nuclei characteristics across the Indo-
543	Gangetic Plain prior to the onset of the Indian summer monsoon, Atmospheric Chemistry and
544	Physics, 20, 561-576, https://doi.org/10.5194/acp-20-561-2020, 2020a.
545	Jayachandran, V. N., Varghese, M., Murugavel, P., Todekar, K. S., Bankar, S. P., Malap, N., Dinesh, G.,
546	Safai, P. D., Rao, J., Konwar, M., Dixit, S., and Prabha, T. V.: Cloud condensation nuclei
547	characteristics during the Indian summer monsoon over a rain-shadow region, Atmospheric
548	Chemistry and Physics, 20, 7307-7334, https://doi.org/10.5194/acp-20-7307-2020, 2020b.
549	Jefferson, A.: Empirical estimates of CCN from aerosol optical properties at four remote sites, Atmos.
550	Chem. Phys., 10, 6855-6861, https://doi.org/10.5194/acp-10-6855-2010, 2010.
551	Ji, Q. and Shaw, G. E.: On supersaturation spectrum and size distributions of cloud condensation nuclei,
552	Geophysical Research Letters, 25, 1903-1906, https://doi.org/10.1029/98GL01404, 1998.
553	Juranyi, Z., Gysel, M., Weingartner, E., Bukowiecki, N., Kammermann, L., and Baltensperger, U.: A 17
554	month climatology of the cloud condensation nuclei number concentration at the high alpine site
555	Jungfraujoch, Journal of Geophysical Research: Atmospheres, 116,
556	https://doi.org/10.1029/2010JD015199, 2011.
557	Leng, C. P., Cheng, T. T., Chen, J. M., Zhang, R. J., Tao, J., Huang, G. H., Zha, S. P., Zhang, M. G., Fang,
558	W., Li, X., and Li, L.: Measurements of surface cloud condensation nuclei and aerosol activity in
559	downtown Shanghai, Atmospheric Environment, 69, 354-361,
560	https://doi.org/10.1016/j.atmosenv.2012.12.021, 2013.
561	Li, J., Chen, H., Li, Z., Wang, P., Cribb, M., and Fan, X.: Low-level temperature inversions and their
562	effect on aerosol condensation nuclei concentrations under different large-scale synoptic
562 563	effect on aerosol condensation nuclei concentrations under different large-scale synoptic circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-
563	circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-
563 564	circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a.
563 564 565	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.:
563 564 565 566	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.: Aircraft measurements of the vertical distribution and activation property of aerosol particles over
563 564 565 566 567	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China, Atmospheric Research, 155, 73-86,
563 564 565 566 567 568	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China, Atmospheric Research, 155, 73-86, https://doi.org/10.1016/j.atmosres.2014.12.004, 2015b.
563 564 565 566 567 568 569	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China, Atmospheric Research, 155, 73-86, https://doi.org/10.1016/j.atmosres.2014.12.004, 2015b. Li, Z., Lau, W. KM., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T.,
563 564 565 566 567 568 569 570	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China, Atmospheric Research, 155, 73-86, https://doi.org/10.1016/j.atmosres.2014.12.004, 2015b. Li, Z., Lau, W. KM., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, SS., Cribb, M., Zhang,
563 564 565 566 567 568 569 570 570	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China, Atmospheric Research, 155, 73-86, https://doi.org/10.1016/j.atmosres.2014.12.004, 2015b. Li, Z., Lau, W. KM., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, SS., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P. M.,
563 564 565 566 567 568 569 570 571 572	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China, Atmospheric Research, 155, 73-86, https://doi.org/10.1016/j.atmosres.2014.12.004, 2015b. Li, Z., Lau, W. KM., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, SS., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and monsoon climate interactions over Asia,
563 564 565 566 567 568 569 570 571 572 572 573	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China, Atmospheric Research, 155, 73-86, https://doi.org/10.1016/j.atmosres.2014.12.004, 2015b. Li, Z., Lau, W. KM., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, SS., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and monsoon climate interactions over Asia, Reviews of Geophysics, 54, 866-929, https://doi.org/10.1002/2015RG000500, 2016.
563 564 565 566 567 568 569 570 571 572 573 573 574	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China, Atmospheric Research, 155, 73-86, https://doi.org/10.1016/j.atmosres.2014.12.004, 2015b. Li, Z., Lau, W. KM., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, SS., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and monsoon climate interactions over Asia, Reviews of Geophysics, 54, 866-929, https://doi.org/10.1002/2015RG000500, 2016. Li, Z., Wang, Y., Guo, J., Zhao, C., Cribb, M. C., Dong, X., Fan, J., Gong, D., Huang, J., Jiang, M., Jiang,
563 564 565 566 567 568 569 570 571 572 573 574 575	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China, Atmospheric Research, 155, 73-86, https://doi.org/10.1016/j.atmosres.2014.12.004, 2015b. Li, Z., Lau, W. KM., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, SS., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and monsoon climate interactions over Asia, Reviews of Geophysics, 54, 866-929, https://doi.org/10.1002/2015RG000500, 2016. Li, Z., Wang, Y., Guo, J., Zhao, C., Cribb, M. C., Dong, X., Fan, J., Gong, D., Huang, J., Jiang, M., Jiang, Y., Lee, S. S., Li, H., Li, J., Liu, J., Qian, Y., Rosenfeld, D., Shan, S., Sun, Y., Wang, H., Xin, J., Yan,
563 564 565 567 568 569 570 571 572 572 573 574 575 576	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China, Atmospheric Research, 155, 73-86, https://doi.org/10.1016/j.atmosres.2014.12.004, 2015b. Li, Z., Lau, W. KM., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, SS., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and monsoon climate interactions over Asia, Reviews of Geophysics, 54, 866-929, https://doi.org/10.1002/2015RG000500, 2016. Li, Z., Wang, Y., Guo, J., Zhao, C., Cribb, M. C., Dong, X., Fan, J., Gong, D., Huang, J., Jiang, M., Jiang, Y., Lee, S. S., Li, H., Li, J., Liu, J., Qian, Y., Rosenfeld, D., Shan, S., Sun, Y., Wang, H., Xin, J., Yan, X., Yang, X., Yang, XQ., Zhang, F., and Zheng, Y.: East Asian Study of Tropospheric Aerosols and
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China, Atmospheric Research, 155, 73-86, https://doi.org/10.1016/j.atmosres.2014.12.004, 2015b. Li, Z., Lau, W. KM., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, SS., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and monsoon climate interactions over Asia, Reviews of Geophysics, 54, 866-929, https://doi.org/10.1002/2015RG000500, 2016. Li, Z., Wang, Y., Guo, J., Zhao, C., Cribb, M. C., Dong, X., Fan, J., Gong, D., Huang, J., Jiang, M., Jiang, Y., Lee, S. S., Li, H., Li, J., Liu, J., Qian, Y., Rosenfeld, D., Shan, S., Sun, Y., Wang, H., Xin, J., Yan, X., Yang, X., Yang, XQ., Zhang, F., and Zheng, Y.: East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EAST-AIRCPC), Journal of
563 564 565 566 568 569 570 571 572 573 574 575 576 577 578	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China, Atmospheric Research, 155, 73-86, https://doi.org/10.1016/j.atmosres.2014.12.004, 2015b. Li, Z., Lau, W. KM., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, SS., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and monsoon climate interactions over Asia, Reviews of Geophysics, 54, 866-929, https://doi.org/10.1002/2015RG000500, 2016. Li, Z., Wang, Y., Guo, J., Zhao, C., Cribb, M. C., Dong, X., Fan, J., Gong, D., Huang, J., Jiang, M., Jiang, Y., Lee, S. S., Li, H., Li, J., Liu, J., Qian, Y., Rosenfeld, D., Shan, S., Sun, Y., Wang, H., Xin, J., Yan, X., Yang, X., Yang, XQ., Zhang, F., and Zheng, Y.: East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EAST-AIRCPC), Journal of Geophysical Research: Atmospheres, 124, 13,026-13,054, https://doi.org/10.1029/2019JD030758,
563 564 565 566 567 568 569 570 571 572 573 573 574 575 576 577 578 579	 circulations, Advances in Atmospheric Sciences, 32, 898-908, https://doi.org/10.1007/s00376-014-4150-z, 2015a. Li, J., Yin, Y., Li, P., Li, Z., Li, R., Cribb, M., Dong, Z., Zhang, F., Li, J., Ren, G., Jin, L., and Li, Y.: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China, Atmospheric Research, 155, 73-86, https://doi.org/10.1016/j.atmosres.2014.12.004, 2015b. Li, Z., Lau, W. KM., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, SS., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and monsoon climate interactions over Asia, Reviews of Geophysics, 54, 866-929, https://doi.org/10.1002/2015RG000500, 2016. Li, Z., Wang, Y., Guo, J., Zhao, C., Cribb, M. C., Dong, X., Fan, J., Gong, D., Huang, J., Jiang, M., Jiang, Y., Lee, S. S., Li, H., Li, J., Liu, J., Qian, Y., Rosenfeld, D., Shan, S., Sun, Y., Wang, H., Xin, J., Yan, X., Yang, X., Yang, XQ., Zhang, F., and Zheng, Y.: East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EAST-AIRCPC), Journal of Geophysical Research: Atmospheres, 124, 13,026-13,054, https://doi.org/10.1029/2019JD030758, 2019.

583	Liu, L., Cheng, Y., Wang, S., Wei, C., Pöhlker, M. L., Pöhlker, C., Artaxo, P., Shrivastava, M., Andreae,
584	M. O., Pöschl, U., and Su, H.: Impact of biomass burning aerosols on radiation, clouds, and
585	precipitation over the Amazon: relative importance of aerosol-cloud and aerosol-radiation
586	interactions, Atmospheric Chemistry and Physics, 20, 13283-13301, https://doi.org/10.5194/acp-
587	20-13283-2020, 2020.
588	Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmospheric Chemistry and
589	Physics, 5, 715-737, https://doi.org/10.5194/acp-5-715-2005, 2005.
590	Manoj, M. R., Satheesh, S. K., Moorthy, K. K., Trembath, J., and Coe, H.: Measurement report:
591	Altitudinal variation of cloud condensation nuclei activation across the Indo-Gangetic Plain prior to
592	monsoon onset and during peak monsoon periods: results from the SWAAMI field campaign,
593	Atmospheric Chemistry and Physics, 21, 8979-8997, https://doi.org/10.5194/acp-21-8979-2021,
594	2021.
595	Paramonov, M., Kerminen, V. M., Gysel, M., Aalto, P. P., Andreae, M. O., Asmi, E., Baltensperger, U.,
596	Bougiatioti, A., Brus, D., Frank, G. P., Good, N., Gunthe, S. S., Hao, L., Irwin, M., Jaatinen, A.,
597	Juranyi, Z., King, S. M., Kortelainen, A., Kristensson, A., Lihavainen, H., Kulmala, M., Lohmann,
598	U., Martin, S. T., McFiggans, G., Mihalopoulos, N., Nenes, A., O'Dowd, C. D., Ovadnevaite, J.,
599	Petaja, T., Poschl, U., Roberts, G. C., Rose, D., Svenningsson, B., Swietlicki, E., Weingartner, E.,
600	Whitehead, J., Wiedensohler, A., Wittbom, C., and Sierau, B.: A synthesis of cloud condensation
601	nuclei counter (CCNC) measurements within the EUCAARI network, Atmospheric Chemistry and
602	Physics, 15, 12,211-12,229, https://doi.org/10.5194/acp-15-12211-2015, 2015.
603	Ren, J., Zhang, F., Wang, Y., Collins, D., Fan, X., Jin, X., Xu, W., Sun, Y., Cribb, M., and Li, Z.: Using
604	different assumptions of aerosol mixing state and chemical composition to predict CCN
605	concentrations based on field measurements in urban Beijing, Atmospheric Chemistry and Physics,
606	18, 6907-6921, https://doi.org/10.5194/acp-18-6907-2018, 2018.
607	Ren, R., Li, Z., Yan, P., Wang, Y., Wu, H., Cribb, M., Wang, W., Jin, X., Li, Y., and Zhang, D.:
608	Measurement report: The effect of aerosol chemical composition on light scattering due to the
609	hygroscopic swelling effect, Atmospheric Chemistry and Physics, 21, 9977-9994, https://doi.org/
610	10.5194/acp-21-9977-2021, 2021.
611	Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl, U.:
612	Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter
613	(DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in
614	theory and experiment, Atmospheric Chemistry and Physics, 8, 1153-1179,
615	https://doi.org/10.5194/acp-8-1153-2008, 2008.
616	Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M. O., and
617	Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-
618	city Guangzhou, China - Part 1: Size-resolved measurements and implications for the modeling of
619	aerosol particle hygroscopicity and CCN activity, Atmospheric Chemistry and Physics, 10, 3365-
620	3383, https://doi.org/10.5194/acp-10-3365-2010, 2010.
621	Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., and
622	Andreae, M. O.: Flood or drought: How do aerosols affect precipitation?, Science, 321, 1309-1313,
623	https://doi.org/10.1126/science.1160606, 2008.
624	Rosenfeld, D., Sherwood, S., Wood, R., and Donner, L.: Climate effects of aerosol-cloud interactions,
625	Science, 343, 379-380, https://doi.org/10.1126/science.1247490, 2014.
626	Rosenfeld, D., Zheng, Y., Hashimshoni, E., Pöhlker, M. L., Jefferson, A., Pöhlker, C., Yu, X., Zhu, Y.,

627	Liu, G., Yue, Z., Fischman, B., Li, Z., Giguzin, D., Goren, T., Artaxo, P., Barbosa, H. M. J., Pöschl,
628	U., and Andreae, M. O.: Satellite retrieval of cloud condensation nuclei concentrations by using
629	clouds as CCN chambers, Proceedings of the National Academy of Sciences USA, 113, 5828-5834,
630	https://doi.org/10.1073/pnas.1514044113, 2016.
631	Schmale, J., Henning, S., Decesari, S., Henzing, B., Keskinen, H., Sellegri, K., Ovadnevaite, J., Pohlker,
632	M. L., Brito, J., Bougiatioti, A., Kristensson, A., Kalivitis, N., Stavroulas, I., Carbone, S., Jefferson,
633	A., Park, M., Schlag, P., Iwamoto, Y., Aalto, P., Aijala, M., Bukowiecki, N., Ehn, M., Frank, G.,
634	Frohlich, R., Frumau, A., Herrmann, E., Herrmann, H., Holzinger, R., Kos, G., Kulmala, M.,
635	Mihalopoulos, N., Nenes, A., O'Dowd, C., Petaja, T., Picard, D., Pohlker, C., Poschl, U., Poulain,
636	L., Prevot, A. S. H., Swietlicki, E., Andreae, M. O., Artaxo, P., Wiedensohler, A., Ogren, J., Matsuki,
637	A., Yum, S. S., Stratmann, F., Baltensperger, U., and Gysel, M.: Long-term cloud condensation
638	nuclei number concentration, particle number size distribution and chemical composition
639	measurements at regionally representative observatories, Atmospheric Chemistry and Physics, 18,
640	2853-2881, https://doi.org/10.5194/acp-18-2853-2018, 2018.
641	Shinozuka, Y., Clarke, A. D., Nenes, A., Jefferson, A., Wood, R., McNaughton, C. S., Ström, J., Tunved,
642	P., Redemann, J., Thornhill, K. L., Moore, R. H., Lathem, T. L., Lin, J. J., and Yoon, Y. J.: The
643	relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried
644	particles: indications of underlying aerosol processes and implications for satellite-based CCN
645	estimates, Atmospheric Chemistry and Physics, 15, 7585-7604, https://doi.org/10.5194/acp-15-
646	7585-2015, 2015.
647	Tao, J., Zhao, C., Kuang, Y., Zhao, G., Shen, C., Yu, Y., Bian, Y., and Xu, W.: A new method for
648	calculating number concentrations of cloud condensation nuclei based on measurements of a three-
649	wavelength humidified nephelometer system, Atmospheric Measurement Techniques, 11, 895-906,
650	https://doi.org/10.5194/amt-11-895-2018, 2018.
651	Twomey, S.: The nuclei of natural cloud formation. Ppart II: The supersaturation in natural clouds and the
652	variation of cloud droplet concentration, Geofisica pura e applicata, 43, 243-249,
653	https://doi.org/10.1007/BF01993560, 1959.
654	Wang, F., Li, Z., Ren, X., Jiang, Q., He, H., Dickerson, R. R., Dong, X., and Lv, F.: Vertical distributions
655	of aerosol optical properties during the spring 2016 ARIAs airborne campaign in the North China
656	Plain, Atmospheric Chemistry and Physics, 18, 8995-9010, https://doi.org/10.5194/acp-18-8995-
657	2018, 2018.
658	Wang, Q., Du, W., Sun, Y., Wang, Z., Tang, G., and Zhu, J.: Submicron-scale aerosol above the city
659	canopy in Beijing in spring based on in-situ meteorological tower measurements, Atmospheric
660	Research, 271, 106128, https://doi.org/10.1016/j.atmosres.2022.106128, 2022
661	Wang, Y., Li, Z., Zhang, Y., Du, W., Zhang, F., Tan, H., Xu, H., Fan, T., Jin, X., Fan, X., Dong, Z., Wang,
662	Q., and Sun, Y.: Characterization of aerosol hygroscopicity, mixing state, and CCN activity at a
663	suburban site in the central North China Plain, Atmospheric Chemistry and Physics, 18, 11,739-
664	11,752, https://doi.org/10.5194/acp-18-11739-2018, 2018.
665	Xia, C., Sun, J., Qi, X., Shen, X., Zhong, J., Zhang, X., Wang, Y., Zhang, Y., and Hu, X.: Observational
666	study of aerosol hygroscopic growth on scattering coefficient in Beijing: A case study in March of
667	2018, Science of The Total Environment, 685, 239-247,
668	https://doi.org/10.1016/j.scitotenv.2019.05.283, 2019.
669	Xu, W., Ovadnevaite, J., Fossum, K. N., Lin, C. S., Huang, R. J., O'Dowd, C., and Ceburnis, D.: Aerosol
670	hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: marine

- and continental air masses, Atmospheric Chemistry and Physics, 20, 3777-3791,
- 672 https://doi.org/10.5194/acp-20-3777-2020, 2020.
- 673 Yau, M. K., and Rogers, R. R.: A short course in cloud physics, edited, Elsevier, 1996.
- 674 Zhang, F., Li, Z. Q., Li, Y. A., Sun, Y. L., Wang, Z. Z., Li, P., Sun, L., Wang, P. C., Cribb, M., Zhao, C.
- 675 F., Fan, T. Y., Yang, X., and Wang, Q. Q.: Impacts of organic aerosols and its oxidation level on
- 676 CCN activity from measurement at a suburban site in China, Atmospheric Chemistry and Physics,
- 677 16, 5413-5425, https://doi.org/10.5194/acp-16-5413-2016, 2016.
- 678 Zhang, F., Wang, Y. Y., Peng, J. F., Ren, J. Y., Collins, D., Zhang, R. Y., Sun, Y. L., Yang, X., and Li, Z.
- 679 Q.: Uncertainty in predicting CCN activity of aged and primary aerosols, Journal of Geophysical
- 680 Research: Atmospheres, 122, 11,723-11,736, https://doi.org/10.1002/2017jd027058, 2017.
- Zhang, L., Sun, J. Y., Shen, X. J., Zhang, Y. M., Che, H., Ma, Q. L., Zhang, Y. W., Zhang, X. Y., and
 Ogren, J. A.: Observations of relative humidity effects on aerosol light scattering in the Yangtze
 River Delta of China, Atmospheric Chemistry and Physics, 15, 8439-8454,
 https://doi.org/10.5194/acp-15-8439-2015, 2015.

685